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Part 1. In a nutshell
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Past constructions

Question

For open (complete and non-compact) manifolds, what are the
differences between nonnegative/positive sectional curvature and
nonnegative/positive Ricci curvature?

There are lots of examples addressing the above question (e.g.,
constructions by Sha-Yang, Menguy, Perelman, etc.)
For this talk, we look at Nabbonand’s example and some related
constructions.

Nabbonand’s examples (1980): Rk × S1 (k ≥ 3) admits a
Riemannian metric with Ric > 0.
Cf: If M has sec > 0, then M is diffeomorphic to Rn.

Wei’s examples (1988): Rk × N, where N is a nilmanifold and k
large, admits a Riemannian metric with Ric > 0.
Cf: If M has sec ≥ 0, then π1(M) is virtually abelian.
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New observations

By investigating the universal covers of related constructions, we
give negative answers to the following open problems (Pan-Wei
2021, 2022).

Open Problem

For an open manifold with nonnegative Ricci curvature, is it true
that its Busemann function at a point must be proper?

Open Problem

For a Ricci limit space, is it true that the Hausdorff dimension of
its singular set cannot exceed that of the regular set?

Both are true under the sectional curvature condition.
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Nabonnard/Bergery’s examples (1980/1986)

Let (N, g0) be a closed manifold of Ric(g0) ≥ 0. Doubly warped
product on Rk × N.

M = [0,∞)×f S
k−1 ×h N, dr2 + f 2(r)ds2 + h2(r)g0

has Ric > 0 for suitable (implicit) f (r), h(r), and large k .
f odd, h even, f ′(0) = 1, h(0) > 0, ...
h(r) decreases → 0 or → c > 0 as r → +∞.
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Wei’s examples (1988)

Let Ñ be a simply connected nilpotent Lie group and let Γ be a
lattice in Ñ. N = Ñ/Γ admits a family of metrics {gr}r≥0 with

|sec(gr )| ≤
c

1 + r2
.

Then for a suitable function f (r), the warped product

M = [0,∞)×f S
k−1 × Nr , dr2 + f 2(r)ds2 + gr

has Ric > 0 when p is large.
diam(Nr ) decays at a rate of r−α (α > 0).
π1(M) = π1(N) is not virtually abelian.
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Choice of warping function h

Doubly warped product

M = [0,∞)×f S
k−1 ×h S

1, dr2 + f 2(r)ds2 + h2(r)g0

with Ric > 0.

Wei’s construction, a polynomial decay h:

f (r) = r(1 + r2)−1/4, h(r) = (1 + r2)−α.

A logarithm decay h:

f (r) =

√
ln 2 · r

ln1/2(2 + r2)
, h(r) = ln−α(2 + r2).
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3.1 Busemann function

Let M be an open Riemannian manifold.

Busemann function associated with a unit speed ray c :

bc(x) = lim
t→+∞

t − d(x , c(t)).

We can view bc(x) as (the negative of) a renormalized distance
from x to infinity along c.

Busemann function at a point p ∈ M:

bp(x) = sup
c

bc(x),

where sup is taken over all rays starting at p.

For convenience, we use the term Busemann function to refer to
the one at some point.
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Busemann function and nonnegative curvature

Theorem (Cheeger-Gromoll 1970)

If M has sec ≥ 0, then the Busemann function is convex and
proper.

Remark: This is one of the key steps in the proof of
Cheeger-Gromoll’s soul theorem...also, properness follows from
convexity.

Theorem (Cheeger-Gromoll 1970)

If M has Ric ≥ 0, then the Busemann function is subharmonic.

Remark: This is one of the key steps in the proof of
Cheeger-Gromoll’s splitting theorem.
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Is it proper?

Open Problem (since the time of splitting theorem, per private
communication with Cheeger):

Question

Is the Busemann function always proper when M has Ric ≥ 0?

Remark: The properness of bp does not depend on the choice of
p ∈ M.

Theorem

Let M be an open manifold with Ric ≥ 0. Then the Busemann
function is proper when
(1) M has Euclidean volume growth (Shen 1996), or
(2) M has linear volume growth (Sormani 1998).
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Answer

Theorem (Pan-Wei 2022)

Given any integer n ≥ 4, there is an open n-manifold with positive
Ricci curvature and a non-proper Busemann function.

In Sormani’s work (linear vol growth) and Shen’s work (Euclidean
vol growth), any asymptotic cone of the manifold is polar.

Question: What if we also assume that all asymptotic cones of M
are polar, is the Busemann function proper?

Theorem (Pan-Wei 2022)

There is an open manifold with positive Ricci curvature, a unique
polar asymptotic cone, and a non-proper Busemann function.
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Look at the covers

Bottom-line:
We will use the Riemannian universal cover M̃ of a doubly warped
product M = [0,∞)×f S

k−1 ×h S
1 with suitable functions f and h

as our examples.

When h decreases to 0 as r → ∞, M̃ has a non-proper Busemann
function.
When h has logarithm decay, M̃ has a unique polar asymptotic
cone, as the standard half-plane, and a non-proper Busemann
function.

To prove the Busemann function at a chosen base point p̃ is
non-proper, we need to find all the rays in M̃ starting at p̃ ...firstly
find all geodesics in M starting at p.
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Geodesics in M

M = [0,∞)×f S
k−1 ×h S

1...write each point in M as (r , x , y)...fix
a point p = (0, x , y) at r = 0 as our base point.

For each x ∈ Sk−1, we define a submanifold
C (x) = {(r ,±x , y)|r ≥ 0, y ∈ S1}.
It is totally geodesic and geodesically complete.
The induced Riemannian metric on C (x) is isometric to the surface
revolution R×h S

1.⋃
x∈Sk−1 TpC (x) = TpM

...equivalent to study geodesics in R×h S
1.

(By classical differential geometry and our choice of h) a geodesic
in R×h S

1 starting at p = (0, y) has one of the following forms:
(1) a radial ray,
(2) a closed geodesic as the circle {r = 0},
(3) a bounded geodesic oscillating between {r ≥ 0} and {r ≤ 0}
indefinitely.
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Rays in the universal cover of M

Let c be a unit speed ray M̃ starting at p̃.

(By the above classification and the splitting theorem,) c must
project to a radial ray c̄(t) = (r(t), x , y) in M for some x ∈ Sk−1

and y ∈ S1.

Let γ be a generator of Γ = π1(M, p) ≃ Z. For all l ∈ Z:
d(γ l p̃, c(t)) ≥ d(p, c̄(t)) = t; d(γ l p̃, c(t)) ≤ t + |l | · 2πh(t).
⇒ bc(γ

l p̃) = 0.

⇒ bp̃(γ
l p̃) = supc bc(γ

l p̃) = 0.
Thus the level set b−1

p̃ (0) contains the entire orbit Γp̃, which is
unbounded. That’s it.
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3.2 Ricci limit spaces

The Gromov-Hausdorff distance between two metric spaces
measures how they look alike.

Gromov’s precompactness theorem

Let (Mi , pi ) be a sequence of complete Riemannian n-manifolds of
Ric ≥ −(n − 1), then (Mi , pi ) has a Gromov-Hausdorff convergent
subsequence with limit as a length metric space (X , p).

The limit (X , p) is referred as a Ricci limit space.

For a Ricci limit space X , a point x ∈ X is called

k-regular, if every tangent cone at x is isometric to Rk .

singular, if otherwise.

Rk : the set of k-regular points.
S: the set of singular points.
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Regularity theory of Ricci limit spaces

Rectifiable dimension (Cheeger-Colding 2000, Colding-Naber 2012)

Let X be a Ricci limit space. There is a unique integer k ∈ [0, n]
such that (among many other properties,) Rk has full ν-measure
for any renormalized limit measure ν. Moreover, dimH(Rk) = k.

This integer k is called the rectifiable dimension of X .

Theorem (Cheeger-Colding 1996)

Let X be a noncollapsing Ricci limit space. Then both its
rectfiable dimension and Hausdorff dimension equal n. Moreover,
dimH(S) ≤ n − 2.

Question (Cheeger-Colding 1996)

For a collapsing Ricci limit space, is it true that the Hausdorff
dimension of the singular set cannot exceed that of the regular set?
Equivalently, Rectifiable dimension=Hausdorff dimension?
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Answer

Theorem (Pan-Wei 2021)

Given any β > 0, for n sufficiently large (depending on β), there is
an open n-manifold N with Ric > 0, whose asymptotic cone (Y , y)
satisfies the following:
(1) Y = S ∪R2, where S is the singular set and R2 is the set of
2-regular points;
(2) S has Hausdorff dimension 1 + β.

When β > 1, dimH Y = dimH S > dimH R.
Limit measure and any dimensional Hausdorff measure may not be
mutually absolutely continuous.
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Asymptotic Cones

Let (M, p) be an open manifold of Ric ≥ 0. For any ri → ∞,
passing to a subsequence if necessary, we obtain the pointed
Gromov-Hausdorff convergence:

(r−1
i M, p)

GH−→ (Z , z).

We call (Z , z) an asymptotic cone of M.

Example: The asymptotic cone of a flat cylinder is a line.

Fact: When M has sec ≥ 0, its asymptotic cone (Z , z) is unique as
a metric cone with vertex z .

In general, when Ric ≥ 0, its asymptotic cone may not be unique
and may not be polar at the base point.
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Equivariant Asymptotic Cones

For the universal cover (M̃, p̃) with Γ = π1(M, p)-action, we can
obtain the equivariant pointed GH convergence:

(r−1
i M̃, p̃, Γ)

GH−−−−→ (Y , y ,G )yπ

yπ

(r−1
i M, p)

GH−−−−→ (Z , z) = (Y /G , ȳ),

where G is a closed subgroup of Isom(Y ). We call (Y , y ,G ) an
equivariant asymptotic cone of (M̃, Γ).

Example: Flat cylinder...

Fact: When M has sec ≥ 0, equivariant asymptotic cone of (M̃, Γ)
is unique as (C (X ), v ,G ), where Gv is isometric to an Rk -factor.
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Look at the covers

Bottom-line:
We will use the Riemannian universal cover M̃ of a doubly warped
product M = [0,∞)×f S

k−1 ×h S
1 with suitable functions f and h

as our examples.

For any equivariant asymptotic cone (Y , y ,G ) of (M̃, Γ), Y has
rectifiable dimension 2; the orbit Gy is the singular set and is
homeomorphic to R.
When h has polynomial decay ∼ r−β, the orbit Gy has Hausdorff
dimension 1 + β.

To prove this, we need to study the π1(M, p)-action on M̃.
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Distance estimate

f (r) = r(1 + r2)−1/4, h(r) = (1 + r2)−α as in Wei’s construction.
Let p ∈ M at r = 0 and γ be a generator of π1(M, p) = Z.
Let cl be a minimal representing loop of γ l .

Because h is decreasing, cl goes further into the end as l increases;
this also shortens the length of cl .
A simple, but crucial, estimate: As l → ∞,

length(cl) ∼ l
1

1+2α ,

size(cl) ∼ l
1

1+2α .
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Asymptotic cones

(r−1
i M̃, p̃, Γ)

GH−−−−→ (Y , y ,G )yπ

yπ

(r−1
i M, p)

GH−−−−→ (Z , z).

Recall that f (r) ∼
√
r and h(r) ∼ r−2α, thus Z is a half-line

[0,∞) with z = 0.
Z = Y /G ...Y as attaching orbits to Z = [0,∞)...G = R and Y is
homeomorphic to R× [0,∞).
Blank space for drawing:
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The orbit Gy

Let g ∈ G with d(gy , y) = 1. Then we can naturally assign every
point in Gy a coordinate (b, 0), where b ∈ R, such that gby
corresponds to (b, 0).

The (extrinsic) distance on Gy = R× {0} satisfies

C1 · |b1 − b2|
1

1+2α ≤ d((b1, 0), (b2, 0)) ≤ C2 · |b1 − b2|
1

1+2α

for all b1, b2 ∈ R, where C1,C2 > 0 only depend on α.

Gy is not geodesic; in fact, the intrinsic distance between any two
distinct points in Gy is infinity.

(Gy , d) has Hausdorff dimension 1 + 2α.
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Some remarks

With some further estimates, we can show that any point
z ∈ Y − Gy is 2-regular.

For any asymptotic cone (Y , y) of (M̃, p̃), Y is non-polar at y .
The first examples of non-polar asymptotic cones are constructed
by Menguy.

As α → 0 in h(r) = (1 + r2)−α, the eGH distance between
(Y , y ,G ) and (R× [0,∞), (0, 0),R) tends to 0, where R acts as
translations on R× [0,∞).

If h(r) has logarithm decay ∼ ln−α(r) or it → c > 0 as r → ∞,
then (Y , y) splits isometrically as R× [0,∞). Thus logarithm
decaying h gives examples with polar asymptotic cones and
non-proper Busemann functions.
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